The department I am working in is called "images/CReATIVe".
It is directed by Pr. Michel BARLAUD who is my Ph. D thesis director too.
My research interests deal with Feature Detection and 3D Reconstruction.
I am currently working on 2D/3D objects detection and segmentation using
geodesic active curves and level set method.
My first work was to find some time-optimisation methods to reduce
processing time of active contours algorithms.
I realised this work in collaboration with Alcatel Research Center
(Marcoussis, France) during a six months training course in 1998.
After this first step in segmentation world, I am now working on finding
new criterions used to drive active curves in different ways :
Beginning with a criterion and using Level Set Method, I obtain a Partial
Differential Equation which allows the active curve to move
towards the objects of the image.
Working with Eric Debreuve, Michel Barlaud and Gilles Aubert, I have
presented a new iterative curve evolution.
|
|
|
O. Amadieu Rapport de Recherche I3S N°99-05 Laboratoire I3S - Sophia Antipolis (France) O. Amadieu, E. Debreuve, M. Barlaud, G. Aubert ICIP'99 - Kobe (Japon) International Conference on Image Processing O. Amadieu, E. Debreuve, M. Barlaud, G. Aubert RFIA'2000 - Paris (France) Reconnaissance de Formes et Intelligence Artificielle J.P. Bruandet, F. Peyrin,J.M. Dinten, O. Amadieu and M.Barlaud MIC'2001 - Californy, USA |
Publications
Download(please let me know what are your researches about when downloading these papers)
Résumé
Rapport de fin d'études (Ecole d'Ingénieur
ESSI et DEA Imagerie Vision "ARAVIS")
Mise en application des contours actifs géodésiques
sur des images synthétiques et des Modèles Numériques
d'Elévation.
Schémas numériques des contours géodésiques.
Implémentation par la méthode des "Level Set" (ou courbes
de niveaux), Schéma numérique de la réinitialisation.
Optimisation temporelle de l'évolution par méthode de Bande
Etroite (NarrowBand) et Multirésolution.
Download(please let me know what are your researches about when downloading these papers)
Abstract
Iterative curve evolution techniques are powerful methods for image
segmentation. Classical methods proposed curve evolutions which guarantee
close contours at convergence and, combined with the level set method,
they easily handled curve topology changes. However, these methods allow
only one-way curve evolutions: shrinking or growing of the curve. Thus,
the initial curve must encircle all the objects to be segmented or several
curves must be used, each one totally inside one object.
In this paper, we present a new approach of iterative curve evolution
using the level set method based on the variational criterion of an inverse
problem. Besides the closing of the final contours and the curve topology
change management, our method allows a two-way curve evolution: parts of
the curve evolve in the outward direction while others evolve in the inward
direction. It offers much more freedom in the initial curve position than
with a classical geodesic search method. Our algorithm performs accurate
and precise segmentations, with length penalty. Results are shown on damaged
images with complex objects (including sharp angles, deep concavities or
holes).
Download(please let me know what are your researches about when downloading these papers)
Résumé
Les techniques itératives d'évolution de courbes sont
des méthodes performantes pour la segmentation d'images. Jusqu'à
présent ces méthodes garantissaient des contours fermés
et, implémentées avec la méthode des courbes de niveaux,
géraient les changements de topologie de la courbe. Malgré
cela, ces méthodes permettent uniquement une évolution des
contours dans une seule direction à la fois : vers l'intérieur
ou vers l'extérieur.
Dans cet article, nous présentons une nouvelle approche d'évolution
itérative de courbes, utilisant la méthode des courbes de
niveaux, basée sur le critère variationnel d'un problème
inverse. En plus de la fermeture des contours et de la gestion de la topologie,
notre méthode permet une évolution dans les deux directions
simultanément : des parties de la courbe peuvent évoluer
vers l'intérieur tandis que d'autres peuvent évoluer vers
l'extérieur, ce qui autorise ainsi une plus grande liberté
dans le choix de la position initiale du contour qu'auparavant. Notre algorithme
fournit une segmentation d'images précise avec pénalisation
pondérée de longueur. Les résultats présentés
sont ceux obtenus sur des images réelles dégradées
contenant des objets complexes (comportant des angles aigus, des concavités
prononcées ou des trous).
Mots Clef
Segmentation, multi-direction, courbes de niveaux, évolution,
EDP, contour actif
Abstract
Iterative curve evolution techniques are powerful methods for image
segmentation. From non-intrinsic to intrinsic methods, from parametric
to geometric models, methods proposed curve evolutions which guarantee
close contours at convergence and which allow us to apply curvature penalties
on those contours. Moreover, combined with the level set method, they easily
handle curve topology changes. The classical iterative geodesic search
takes advantage of all these benefits. However, this method allows only
one-way curve evolutions: shrinking or growing of the curve. Thus, the
initial curve must encircle all the objects to be segmented or several
curves must be used, each one totally inside one object.
In this paper, we present a new approach of iterative curve evolution
using the level set method based on the variational criterion of an inverse
problem. Besides the closing of the final contours and the curve topology
change management, our method allows a two-way curve evolution: parts of
the curve can evolve in the outward direction while other parts can evolve
in the inward direction. It offers much more freedom in the initial curve
position than with a classical geodesic search method. Our algorithm performs
accurate and precise segmentations, with length penalty. Results are shown
on damaged images with complex objects (including sharp angles, deep concavities
or holes).
Keywords
Segmentation, inward, outward, level set, PDE, active contour
Download(please let me know what are your researches about when downloading these papers)
Abstract
This paper addresses tomographic reconstruction of binary images
from a small number of noisy projections. Therefore a region based reconstruction
method using curve evolution is proposed. To manage the lack of data, the
tomographic reconstruction problem is defined as a domain optimization
problem. A geometrical criterion directly embedded in a dynamical scheme
is defined. The minimization of this criterion drives the region determination.
This scheme is implemented using a level set method including regularization
via local curvature. The quality of images reconstructed from noiseless
projections is satisfying even without regularization. However when the
number of projections or the signal to noise ratio is decreased, reconstructed
images suffer from geometrical degradations. We show the improvement of
the results brought by regularization in drastic conditions such as reconstruction
from three noisy projections.
Simultaneous Inward and Outward Curve Evolution |
Segmentation par Contours Actifs Déformables - Approche Bidirectionnelle |
|